4 Descrição dos Algoritmos de Estimação de Movimento

4.1 Introdução

A estimação de movimento, devido aos deslocamentos de objetos em uma cena ou da câmera, é realizada pelos algoritmos de estimação de movimentos, cujo objetivo é descrever, da melhor maneira e com a menor complexidade computacional possível, estes movimentos. O número de vetores de movimento a ser transmitido é fundamental para o valor da compressão final. Por esta razão os codificadores de vídeo não se utilizam de vetores de movimento pixel-a-pixel e sim bloco a bloco.

A transmissão de um vetor de movimento para cada pixel é indesejável e, em geral, desnecessária. Considerando que, normalmente, os elementos adjacentes de uma imagem estão submetidos ao mesmo movimento, alguns algoritmos de estimação de movimento dividem o quadro de imagem em blocos de pixels e, desta maneira, um único vetor é utilizado para representar o movimento de um bloco de pixels adjacentes. Este tipo de abordagem é chamado de casamento de blocos [24].

Os algoritmos que estarão em análise neste trabalho estão classificados como algoritmos de casamento de blocos, técnica esta que apresenta como principais fatores: bom desempenho, baixos esforços computacionais exigidos, além do fato de todos os padrões de compressão utilizarem este método.

4.2 Casamento de Blocos

Em algoritmos de casamento de blocos, um bloco (N x N pixels) de referência do quadro atual de uma seqüência de imagens é comparado com blocos candidatos correspondentes dentro de uma janela de busca de tamanho (2W + 1) x (2W + 1) pixels no quadro anterior. Uma parte

ou todos os blocos do quadro anterior, dentro da área de busca, são confrontados com bloco de referência. Aquele que proporcionar o melhor casamento, ou seja, a menor distorção, fornecerá o vetor de movimento. Um vetor de movimento é transmitido para cada bloco de pixels do quadro atual.

Os principais parâmetros envolvidos nas técnicas de casamento de blocos são: o tamanho do bloco, a área de busca e os códigos utilizados para representar os vetores de movimento.

Este capítulo apresenta uma breve descrição de alguns dos principais algoritmos de estimação de movimentos por casamento de blocos publicados na literatura: FSA (Full Search Algorithm), UMHS (Unsymmetrical-cross Multi-Hexagon-grid Search) [28], 3SSA (Three Step Search Algorithm) [1], LOG-2D [4], N3SSA (New Three Step Search Algorithm) [21], 4SSA (Four Step Search Algorithm) [2], DSA (Diamond Search Algorithm) [8], UCBDSA (Unrestricted Center-Biased Diamond Search Algorithm) [26], CSA (Cross Search Algorithm) [7], IFA (Integral Frames Algorithm) [14], SSA (Statistical Search Algorithm) [25], AFSA (Adaptive Full Search Algorithm) [3], NNA (Nearest Neighbors Algorithm) [22], WUSA (Winner Update Strategy Algorithm) [31], SEA (Successive Elimination Algorithm) [5], ASEA (Adaptive Successive Elimination Algorithm) [6] e MSEA (Modified Successive Elimination Algorithm) [20].

4.2.1 FSA

Neste método, o bloco em análise do quadro atual de uma seqüência de imagens é comparado com todos os blocos candidatos possíveis dentro da janela de busca de tamanho $(2W+1) \times (2W+1)$ pixels no quadro anterior. Com isto o número de testes de casamento, por bloco, é dado por:

$$Nt = (2W + 1)^2 (4-1)$$

A vantagem do algoritmo FSA é o desempenho, ou seja, como todos os blocos candidatos possíveis dentro da janela de busca no quadro anterior são verificados sob o critério de mínima distorção, a possibilidade de se encontrar o erro mínimo global é maior que em outros algoritmos.

Na tentativa de diminuir o grande esforço computacional exigido pelo algoritmo FSA, diversos algoritmos de casamento de blocos de busca rápida têm sido propostos.

4.2.2 3SSA

O algoritmo 3SSA [1], normalmente é utilizado para uma janela de busca com W = 7 pixels e, para o primeiro passo, as buscas são realizadas somente para as seguintes posições: (-4,-4); (0,-4); (4,-4); (-4,0); (0,0); (4,0); (-4,4); (0,4); (4,4). Um segundo passo é executado com um novo procedimento de busca utilizando-se o mínimo local encontrado no primeiro passo como centro de um novo diagrama de busca. Nesse passo as seguintes posições são avaliadas (-2,-2); (0,-2); (2,-2); (-2,0); (0,0); (2,0); (-2,2); (0,2); (2,2). Finalmente, a exemplo do segundo passo, um terceiro e último passo, identifica o vetor de movimento utilizando-se mais uma vez do mínimo local encontrado no passo anterior, como centro de um último diagrama de busca, ou seja: (-1,-1); (0,-1); (1,-1); (-1,0); (0,0); (1,0); (-1,1); (0,1); (1,1).

4.2.3 LOG-2D

Este algoritmo é baseado na premissa de que a distorção cresce monotonicamente à medida que nos afastamos do ponto de menor distorção [4]. O objetivo desse algoritmo, a exemplo dos demais, é determinar o bloco do quadro anterior que apresenta o melhor casamento com o bloco em análise do quadro atual. Isto é feito através de diversas etapas, sempre procurando determinar a direção de mínima distorção.

Cada passo do algoritmo consiste de procura em cinco localizações em forma de cruz. Este procedimento continua até que o plano de procura se reduza a um tamanho 3 x 3. A distância entre os pontos de busca é reduzida se o mínimo de distorção coincidir com o centro do diagrama de busca ou com o limite da área de busca. No passo final, todas as nove posições são examinadas e a posição correspondente ao mínimo é a direção de mínima distorção.

4.2.4 N3SSA, 4SSA, DSA, UCBDSA, CSA, IFA e SSA

Esses algoritmos têm uma característica em comum aos algoritmos 3SS e LOG-2D que reside no fato de recaírem rapidamente no erro local mínimo resultando em uma significativa perda na acuracidade de estimação e, por conseguinte, no desempenho de compressão.

Em particular, o algoritmo SSA apresenta uma técnica de interesse na sub-amostragem dos macroblocos para o cálculo da medida de custo, porém mantendo o número de posições de procura a fim de não recair no erro local mínimo.

4.2.5 AFSA

Este algoritmo explora a correlação de movimento espacial dos blocos vizinhos e determina a origem da procura, ajustando o tamanho da janela de busca de acordo com os diferentes conteúdos de movimento dos blocos em análise [3].

A idéia básica deste algoritmo consiste em ajustar a origem de busca para cada bloco em análise através dos vetores de movimento dos blocos adjacentes à esquerda, esquerda superior e superior juntamente com o vetor v = (0,0) (bloco co-situado do quadro anterior). O vetor (m,n) que minimiza a medida de distância Função Distorção Erro Absoluto Médio (EAM) aponta para a localização no quadro anterior a ser utilizada como origem da área de busca. Note que (m,n) representa uma predição do vetor de movimento do bloco de referência e identifica um bloco candidato inicial ao casamento. Cada bloco de referência é classificado em baixo, médio e alto movimento e a janela de busca é ajustada em W/4, W/2 e W, respectivamente. O algoritmo FSA é, então, aplicado.

A grande redução do número médio de procuras por quadro é obtida considerando-se que no algoritmo FSA são examinados

$$(2W+1)^2 (4-2)$$

pontos no quadro anterior para cada bloco de referência, e que somente um número pequenos de blocos possui muito movimento para a maioria das seqüências de imagens utilizadas.

Considerando-se que não é uma boa idéia fixar a área de procura para todos os blocos do quadro, uma vez que sempre haverá partes distintas de imagens com diferentes graus de movimento envolvidos, uma solução consiste em ajustar o tamanho da janela de busca de acordo com a quantidade de movimento contida em cada bloco. Desta maneira, pode ser economizada bastante complexidade computacional.

O valor encontrado para a função distorção EAM, na origem de busca, reflete o grau de movimento para um determinado bloco em questão. Valores altos de EAM indicam uma grande mudança entre o quadro presente e o

quadro passado e que existe uma grande possibilidade do bloco possuir muito movimento.

- Se EAM > T1 = Bloco com muito movimento;
- Se $T2 < EAM \le T1$ = Bloco com médio movimento;
- Se EAM < T2 = Bloco com pouco movimento.

onde, T1 e T2 são dois valores de limiar.

Os valores de T1 e T2 são ajustados no início de cada seqüência de imagens de acordo com a lista de EAM´s calculadas para cada origem de busca e posteriormente são ajustados quadro a quadro de acordo com as expressões a seguir.

Para o quadro n, o algoritmo calculará [3]:

- NH(n) = número de blocos com muito movimento;
- NM(n) = número de blocos com médio movimento;
- -N1(n) = número de blocos com movimento maior que W/2;
- N2(n) = número de blocos com movimento entre W/4 e W2;
- $PH(n) = N1(n)/NH(n) \times 100\%;$
- $PM(n) = N2(n)/NM(n) \times 100\%;$

$$T1^{n+1} = T1^{n} - \lfloor |PH(n) - PH(n-1)/20\%| \rfloor sgn PH(n) - PH(n-1)$$

$$(4-3)$$

$$T2^{n+1} = T2^{n} - \lfloor |PM(n) - PM(n-1)/20\%| \rfloor sgn PM(n) - PM(n-1)$$

$$(4-4)$$

onde, $\lfloor x \rfloor$ representa o maior inteiro menor que $x, \, sgn(f) = -1; f < 0$ esgn(f) = +1; f > 0

4.2.6 NNA, WUpA e UMHS

Os algoritmos citados nesta seção ajustam a origem de procura de cada bloco de acordo com os vetores de movimento dos blocos adjacentes vizinhos. Em particular, o algoritmo WUpA utiliza um interessante critério de descarte alcançando bons resultados em termos de redução de complexidade, mantendo a solução ótima alcançada pelo FSA.

O algoritmo UMHS é o algoritmo que foi adotado pelo JVT para ser utilizado pelos codificadores de referência do padrão H.264/AVC. Este algoritmo apresenta grande redução da complexidade, quando comparado ao FSA, mantendo a qualidade em termos de PSNR. Este algoritmo será descrito em detalhes no Capítulo 5, já que este foi a referência utilizada para a criação do algoritmo proposto neste trabalho.

4.2.7 SEA

A idéia básica deste algoritmo consiste em se obter a melhor estimativa dos vetores de movimento através de sucessivas eliminações de posições de procura dentro da janela de busca, e com isso diminuir o número necessário de avaliações de casamento, tornando menor o esforço computacional necessário [5].

Considerando-se blocos de tamanho N x N pixels, janela de busca de (2W+1) x (2W+1) pixels, que f(i,j,t) é a intensidade de um pixel com coordenada (i,j) no quadro "t", que a função EAM é utilizada para avaliar o casamento entre dois blocos e ainda considerando que o casamento seja realizado com o quadro "t - 1" anterior, temos:

Casamento =
$$F(i, j, t) - F(i - x, j - y, t - 1)$$
 (4-5)

Para mostrar a equação final do algoritmo em análise, que permitirá reduzir o número médio de procuras por quadro, utiliza-se as seguintes inequações matemáticas:

$$||a| - |b|| \le |a - b| \tag{4-6}$$

$$|a| - |b| \le |a - b| \tag{4-7}$$

Utilizando-se estas inequações e a expressão de casamento, é fácil mostrar que:

$$R - M(x, y) \le EAM(x, y) \tag{4-8}$$

$$M(x,y) - R \le EAM(x,y) \tag{4-9}$$

onde R representa a soma de normas dos pixels do bloco de referência, M(x,y) é a soma de normas dos pixels de um determinado bloco candidato ao casamento com vetor de movimento (x,y), e EAM(x,y) representa a Função Distorção Erro Absoluto Médio para o vetor de movimento (x,y).

Assumindo que tenhamos obtido EAM(m,n) para um bloco inicial candidato a casamento, com vetor de movimento (m,n), fica claro que a procura por outros blocos candidatos que apresentem melhor casamento (menor EAM) deverá ser realizada somente para aqueles que apresentarem vetor de movimento (x,y) e atenderem à seguinte condição:

$$EAM(x,y) \le EAM(m,n) \tag{4-10}$$

Utilizando-se a inequação anterior, podemos reescrever (4-8) e (4-9) da seguinte maneira:

$$R - M(x, y) \le EAM(m, n) \tag{4-11}$$

$$M(x,y) - R \le EAM(m,n) \tag{4-12}$$

Finalmente, de (4-11) e (4-12), temos:

$$R - EAM(m, n) \le M(x, y) \le R + EAM(m, n) \tag{4-13}$$

A inequação (4-13) é o resultado de maior importância utilizado pelo algoritmo SEA. Esta expressão mostra que a procura para se obter o melhor casamento (menor EAM), só será realizada nos blocos que apresentarem soma de normas que a satisfaçam.

4.2.8 **ASEA**

O algoritmo ASEA utiliza-se da mesma estratégia (correlação de movimento espacial dos blocos vizinhos) empregada pelo algoritmo AFSA para aumentar a eficiência da predição inicial do vetor de movimento dos esquemas de eliminação sucessiva.

4.2.9 MSEA

O algoritmo MSEA é uma modificação do algoritmo SEA, que mantém a solução ótima para busca do erro mínimo global e reduz ainda mais a complexidade do FSA quando comparado ao SEA original.

Este algoritmo introduz novos critérios de descarte dos macroblocos, antes do cálculo da medida de custo. Estes critérios ajudam na pré-seleção dos macroblocos a serem utilizados para o cálculo da medida de custo.

Como inovação, este algoritmo traz a incorporação de critérios para descarte dos blocos. Novos critérios de descarte são inclusos e executados antes do cálculo de distorção, sendo estes critérios organizados em ordem crescente de complexidade.

Além disso, é realizada a pré-ordenação dos blocos antes do cálculo de distorção, onde a soma das normas apontará para os blocos que sofrerão o cálculo de distorção.

Em termos de resultado, o algoritmo MSEA obtém os mesmos valores de PSNR que o SEA e o FSA, alcançando redução no tempo de processamento em torno de 60 vezes, quando comparado ao FSA, e em torno de 48 vezes, quando comparado ao SEA [5].

4.2.10 Algoritmos de interesse

Após esta breve análise, definiram-se como algoritmos de interesse para esta dissertação de Mestrado, os seguintes algoritmos:

- FSA (Full Search Algorithm)
- AFSA (Adaptive Full Search Algorithm)
- UMHS (Unsymmetrical-cross Multi-Hexagon-grid Search)

As escolhas acima tiveram como base as seguintes premissas:

- Aplicar técnicas que se aproximem do erro mínimo global, alcançando qualidade, em termos de PSNR, sempre maior ou igual as dos algoritmos FSA e UMHS.
- Implementar técnicas de medida de movimento com o objetivo de utilizar os parâmetros corretos para cada tipo de movimento.
- Utilizar os algoritmos implementados no codificador de referência do padrão H.264/AVC disponibilizado pelo orgão JVT (*Joint Video Team*).

- Reduzir a complexidade computacional quando comparado aos algoritmos FSA e UMHS.
- Desenvolver algoritmo que possa ser utilizado para a aplicação de TV Digital.